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Summary 
 
The P system is a general distributed model, highly parallel and based on the notion of a 
Membrane structure. This investigation addressed the development of a model for P 
systems with Active Membranes using the Membrane Creation technique. The usefulness 
of the model was shown by applying the model to solve the Hamiltonian Path Problem 
(HPP) for Undirected Graphs. The relevant algorithm for the problem is presented. 
 
 
 
 
Introduction 
P systems are a class of distributed parallel computing models introduced in (1), inspired 
by the way live cells process chemical compounds, energy, and information. In short, in 
the regions delimited by a membrane structure, one places multi-sets of objects, which 
evolve according to evolution rules associated with the regions.  A computation 
consists of transitions among system configurations.  The result of a halting computation 
is the vector of the multiplicities of objects present in the final configuration in a 
specified output membrane or of objects which leave the external membrane of the 
system (the skin membrane) during a computation. 
 
The P systems can be of different forms, such as: 

1) P system with Labeled Membranes 
2) P system with Polarized Membranes 
3) P systems with Active membranes. 
 

In this investigation we addressed P systems with Active membrane defined in (2, 3).The 
P systems with Active Membranes can be classified in two forms: 

1) Passive P systems, and 
2) Active P systems. 

The P systems addressed in (2, 3) are Passive systems. Here the membrane structure 
consists of m different membranes and during the computation this number may either 
decrease (by dissolving membranes) or increase (by dividing the existing membranes) but 
this number ( with respect to the labels of membranes) is always less than or equal to m. 
The degree of a passive P system is the number of initial membranes present in the 
system. 
 
Sometimes it may happen that different types of membranes may be increased in a 
membrane system by creating new membranes whose labels are different from the 
existing ones. Such systems are called Active P systems. 
 
Membranes are created continuously in biology, for instance in the process of Vesicle 
mediated transport. Because one of the roles of membranes is to keep the molecules of 
a compartment close to each other in order to facilitate their reactions, when a 
compartment becomes too large, it often happens that new membranes appear inside it, 
more or less spontaneously or during biological evolution. The process of creating new 
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membranes is also known as “Autopoiesis” and the details of the process are addressed 
in (4, 5).This investigation considered the creation of membranes under the influence of 
existing objects. We abstracted the operation, using it in an idealized way, mainly as a 
tool for better structuring the objects of a given membrane system. 
 
Membrane creation can be introduced both for systems with Symbol objects (6-9) and 
for systems with String-objects (10). We considered the case of symbol objects. 
 
The P system with Active Membranes was investigated in the 2003 Visiting Faculty 
Research Program (VFRP) research Project (11). The model was enhanced in the 2004 
VFRP research project and the algorithms for the Satisfy-ability problem (SAT) and the 
HPP problems are given in the Appendix. In this project the Membrane Creation 
Techniques were applied to develop the P System model. 
The following sections describe the model and its application. 
 
 
The Model 
A P system with Membrane Creation of degree (m, n), n ≥ m ≥ 1, is a construct: 
 

          Π = (V, T, C, µ, w0, w1, ……, w(m-1), R0, R1, ……., R(n-1) ), 

Where: 

1. V is an alphabet; it consists of both productive and non-productive objects; 

2. T ⊆  V, is the output alphabet; 

3. C ∩  V ≠ φ, is the set of catalysts; 

4. µ is a membrane structure consisting of m membranes, with the membranes and 
the regions labeled in a one- to-one manner with elements in a given set; here the 
labels are used as 0 (for the skin membrane), 1, ……, (m-1); 

5. wi ,   0 ≤ i ≤ (m-1), are multi-sets of objects over V associated with the regions        
0, 1,…., (m-1) of µ; 

6. Ri , ,   0 ≤ i ≤ (n-1), are finite set of evolution rules over V.  

An evolution rule is of two types: 

(a) If  a  is a single non-productive object, then the evolution rule is in the form a → v 
or c a → c v, where c ∈  C,  a ∈  (V - C), v = v′ or v = v′ δ or v = v′ τ, where v′ is a 
multi-set of objects over ((V-C) x ﴾ here, out﴿) ∪ ((V-C) x ﴾ inj 1 ׀ ≤  j ≤ (n-1)﴿), 
and   δ, τ  are special symbols not in V.  
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(b) If a is a single productive object, then the evolution rule is in the form                   
a → [ i v ] i  or c a → c [ i v ] i , where c ∈  C,  a ∈  (V - C), v is a multi-set  of 
objects over (V-C). The rule of the form a → [ i v ] i  means that the object 
identified by  a  is transformed into the object identified by  v, surrounded by a 
new membrane having the label  i. No rule of the form a → [0 v ] 0  can appear in 
any set Ri . During a computation the number of membranes can increase or 
decrease. 

The membrane structure and the multi-sets in Π constitute the initial configuration of the 
system. One can pass from a configuration to another one by using the evolution rules. 
This is done in parallel: all objects, from all membranes, which can be the subject of local 
evolution rules, should evolve simultaneously. A rule can be used only if there are objects 
which are free at the moment one checks its applicability.  

The application of a rule  c a → c v  in a region containing a multi-set  w  means to 
remove a copy of the object  a  in the presence of  c (catalyst), provided that such copies 
exist, then follow the prescription given by  v: If an object appears in  v  in the form (a, 
here), then it remains in the same region; if it appears in the form (a, out), then a copy of 
the object  a  will be introduced in the region of the membrane placed outside the region 
of the rule  c a → c v  ; if it appears in the form (a, ini ), then a copy of  a  is introduced in 
the membrane with index  i, if such a membrane exists inside the current membrane, 
otherwise the rule can not be applied. If the special symbol τ appears, then the thickness 
of the membrane which delimits the region in question is increased by 1. Initially, all 
membranes have the thickness 1. If a rule in a membrane of thickness 1 introduces the 
symbol τ, then the thickness of the membrane becomes 2. A membrane of thickness 2 
does not become thicker by using further rules which introduce the symbol τ, but no 
object can enter or exit it. If a rule which introduces the symbol δ is used in a membrane 
(including the skin membrane) of thickness 1, then the membrane is dissolved. If the 
membrane had thickness 2, then it returns to thickness 1. When ever the skin membrane 
is dissolved, the whole membrane system will be destroyed. If at the same step one uses 
rules which introduce both δ and τ in the same membrane, then the membrane does not 
change its thickness. No object can be communicated through a membrane of thickness 
two, hence rules which introduce commands out and in, requesting such communications, 
can not be used. The communication has priority over changing the thickness. If at the 
same step an object should be communicated and a rule introduces the action τ, then the 
object is communicated and “after that” the membrane changes the thickness. When 
applying a rule a → [ i v ] i  in a region j, a copy of a is removed and a membrane with 
the label i is created, containing the multi-set v, inside the region of membrane j. We can 
never create a skin membrane. Similarly, when applying a rule c a → c [ i v ] i  in a 
region j, a copy of a, in presence of c (catalyst), is removed and a membrane with the 
label i is created, containing the multi set v, inside the region of membrane j. 

A sequence of transitions between configurations of a given P system Π is called a 
Computation with respect to Π. A computation is successful if and only if it halts, that 
is, there is no rule applicable to the objects present in the last configuration. The result of 
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a successful computation is ψT(w), is denoted by Ps(Π) (from “Parikh set”) and we say 
that it is generated by Π. (Note that we take into account only the objects from T). 

The model was applied to solve the following problem: 

 
The Hamiltonian Path Problem (HPP) for Undirected Graphs. 

Let   G = (U, E) be an undirected graph with n nodes (n ≥ 2), where U is the set of nodes 
and E, the set of edges. 

The Hamiltonian path problem determines whether or not there exists a Hamiltonian path 
in G, that is, whether or not there exists a path that passes through all the nodes in U 
exactly once. The HPP for undirected graphs is known to be Non Deterministic 
Polynomial, NP-Complete. 
Let U = (a1, a2, ……, an ). We now construct a P System with membrane creation of degree 
(1, n + 1), where 1 is the initial number of membranes & (n+1) is the total number of 
membranes used in the computation. 
  

                                           Π = (V, T, C, µ, w0, R0, R1, ……., Rn ), 

Where  V = ﴾ ai , ai
΄, fi , fi

΄, di , di
΄ , ci

j 1 ׀ ≤  i  ≤ n,  0 ≤  j  ≤ n ﴿ ∪ ﴾ Y ﴿∪   

                    ﴾ ti 0 ׀ ≤ I ≤ 3n ﴿;   ( here ai are productive objects ). 

T = ﴾ Y ﴿; 

C = φ; 

µ = [0 ] 0 ; 

w0 = ﴾ t0 , a1 , a2 , ……, an ﴿; 

The set R0 contains the following rules: 

1.  ti → ti+1 ,  0 ≤  i  ≤  3n – 1; 

2. t3n → δ; 

3. ci
j → λ ,  1 ≤ j ≤ n – 1, i∀ ; 

4. ci
n → ( Y, out ), i∀ ;  

5. ai → [ i  fi
΄ , ci

0 , aj1, ……, ajk  ] i ,  1 ≤  i  ≤  n; 

   ( ai  will create a new membrane with label i and transform into a multi-set of objects                        
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     fi
΄ , ci

0 , aj1, ……, ajk  ,  where  j1 , ……., jk  are vertices adjacent to vertex i ). 

The set  Ri ,  1 ≤  i  ≤  n , contains the following rules: 

1.   aj → [ i  fj
΄΄, dj ,a΄

j1, ……, a΄j k ] j ,  1 ≤  j  ≤  n; 

 ( aj  will create a new membrane with label  j  and transform into a multi-set of objects  

  fj
΄ , dj

΄ ,a΄
j1, ……, a΄

j k  , where j1 , ……., jk   are vertices adjacent to vertex  j ). 

2. d΄
i → di; 

3. f΄i → ( fi , inj1 )  ( fi , inj2 )  ….. ( fi , injk );    

  (Here j1 , ……., jk  are vertices adjacent to vertex i ).  

4.  f΄j → ( fj , inj1 )  ( fj , inj2 )  ….. ( fj , injk ) , ≠∀ j  i ;  

  (Here j1 , ……., jk  are vertices adjacent to vertex i ).  

5. a΄
j →  aj ; 

6. di → c0
i ; 

7. fi → λ τ ; 

8. ck
j →  ( cj

k+1 , out ) , k ≥ 0 ; 

N( 1, n+1 )  ( Π ) =  ﴾ Ym , if the given graph has   m  Hamiltonian paths. ﴿ 

                     =   φ   otherwise. 

The system works as follows: 

Initially the skin membrane contains all the productive objects a1 , a2 , ……, an , where  each 
productive object  ai , by using the rule   ai → [ i  fi

΄ , ci
0 , aj1, ……, ajk  ] i ,   will create a 

membrane with index  i  and transform into the multi-set of objects                

          fi
΄ , ci

0 , aj1, ……, ajk.   

In membrane i, a productive object aj will create a membrane with index j and transform 
into a multi-set of objects fj

΄΄, dj ,a΄
j1, ……, a΄

j k . In membrane i, f΄j will be replaced with fj , 
d΄j  will be replaced with dj , and a΄j with aj . In the next step, dj will be replaced with c0

j , aj  
will create a membrane by using the rule aj → [ i  fj

΄΄, dj ,a΄
j1, ……, a΄

j k ] j  and the process 
defined above will be repeated. When ever a new membrane is created, all fj’s and f΄i’s, 
from its parent membrane, will move into that membrane. The role of fj is to increase the 
thickness of the membrane j, so that no object will be sent out from that membrane. This 
will eliminate the effect of the path, which contains multiple copies of the same node, on 
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the result. For every rewriting step, cj
k   will be rewritten as cj

k+1   and sent out of the 
membrane i provided that the thickness of the membrane i is 1. In the skin membrane, cn

j, 
(indicates that there exists a tour of path length n) will be replaced with Y and sent out. A 
counter ti is used in the skin membrane, so that for every rewriting step it will be 
incremented. When ever the counter reaches t3n , indicating the end of the computation, 
the counter will dissolve the whole membrane system by dissolving the skin membrane. 
If there exists a tour of length n, by traversing all nodes in the graph, then we get Y from 
the system. 

Time Complexity: This algorithm takes 3n+1 steps for generating the output. 

  
   The Algorithm: Hamiltonian Path Problem for Undirected Graphs. 
 
Let us consider the graph G = (U, E), with U = {a1, a2, a3} as shown Fig 1 below: 
 

                            
                                          
                                           Figure 1: The Undirected Graph (HPP) 
 
We now construct a P system with membrane creation of degree (1, 4) as: 
  

                                         Π = (V, T, C, µ, w0, R0,  ……., R3 ), 

Where  V = (  ai , ai
΄, fi , fi

΄, di , di
΄ , ci

j 1 ׀ ≤  i  ≤ 3,  0 ≤  j  ≤ 3 ) ∪  (ti 0 ׀ ≤ i ≤ 9) ∪ (Y); 

T = ﴾ Y ﴿; 

C = φ; 

µ = [0 ] 0 ; 
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w0 = ﴾ t0, a1 ,  ……, a3 ﴿; 
 
and Ri , 0 ≤  i  ≤ 3, 
 
1. [0 t0 a1 a2 a3 ] 0  

 
 
2.  [0 t1 [1 f1

΄ c1
0 a2 ] 1 [2 f2

΄ c 
2

0 a1 a3 ] 2 [3 f 
3
΄ c3 0 a2 ] 3 ] 0  

 
 

3.  [0 t2 c1
1 c2

1 c3
1 [1  f1

΄ [2  f2
΄ d2

΄ a1
΄ a3

΄ ] 2 ] 1 [2 f2
΄ [1 f1

΄ d1
΄ a2

΄ ] 1 [3 f3
΄ d3

΄ a2
΄ ] 3 ] 2  

 
      [3 f3

΄ [2 f2
΄ d2

΄ a1
΄ a3

΄ ] 2 ] 3 ] 0  
 
 
4.   [0  t3 [[ 21 f1 f2

΄ d2 a1 a3 ] 2 ] 1 [[ 12 f1
΄ f2 d1 a2 ] 1 [3  f2 f3

΄ d3 a2 ] 3 ] 2   
      [[ 23 f2

΄ f3 d2 a1 a3 ] ] ]032  
 
 
5.   [0  t4 [[ 21  f1 f2

΄ c2
0 [1  f1 d1

΄ a2
΄ ] 1 [3  f3

΄
 d3

΄
 a2

΄ ] 3 ] 2 ] 1  

 
      [[ 12  f1

΄ f2 c1
0 [2  f2

΄ d2
΄ a1

΄ a3
΄ ] 2 ] 1 [3 f2 f3

΄ c3
0 [2 f2

΄ d2
΄ a1

΄ a3
΄ ] 2 ] 3 ] 2  

    
      [[ 23 f2

΄ f3 c2
0 [1  f1

΄ d1
΄ a2

΄ ] 1 [3 f3
΄ d3

΄ a2
΄ ] 3 ] 2 ] 3 ] 0  

 
 
6. [0 t5 [1 c2

1 [[ 12  f1 f2 f1
΄ d1 a2 ] 1  [3  f1 f2 f3

΄ d3 a2 ] 3 ] 2 ] 1  

 
     [2 c1

1 c3
1 [[ 21  f1 f2 f2

΄ d2 a1 a3 ] 2 ] 1 [[ 23  f2 f3 f2
΄d2 a1 a3 ] 2 ] 3 ] 2  

 
     [3 c2

1 [2 [1  f2 f3 f1
΄ d1 a2 ] 1  [3 f2 f3 f3

΄ d3 a2 ] 3 ] 2 ] 3 ] 0  
 
7.  [0  t6 c1

2 c2
2c2

2 c3
2 [1 [2 ﴾ 1  f2 f1

΄ c1
0 [2  f2

΄ d2
΄ a1

΄ a3
΄ ] 2 ﴿ 1                                                       

      [3  f1 f2 f3
΄ c3

0 [2 f2
΄ d2

΄ a1
΄ a3

΄ ] 2 ] 3 ] 2 ] 1  
 
      [[ 12 ﴾2 f1 f2

΄ c2
0 [1 f1

΄ d1
΄ a2

΄ ] 1 [3  f3
΄ d3

΄ a2
΄ ] 3 ﴿2 ] 1 [3  ﴾2 f3 f2

΄ c2
0 [1  f1

΄ d1
΄ a2

΄ ] 1                                              

 
      [3 f3

΄ d3
΄ a2

΄ ] 3 ﴿2 ] 3 ] 2  
    
      [[[ 123  f2 f3 f1

΄ c1
0 [2  f2

΄ d2
΄ a1

΄ a3
΄ ] ]12  ﴾3 f2 f3

΄ c3
0 [2   f2

΄ d2
΄ a1

΄ a3
΄ ]2 ﴿3 ] ] ]032  

 
8. [0  t7 [[ 21  c3

1  ﴾1 c1
0 [2   f2 f1 f2

΄ d2 a1 a3 ]2  ﴿1 [[ 23 f1 f2 f3 f2
΄ d2 a1 a3 ] ] ] ]1232    
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    [2 [1 ﴾2  c2

0 [1  f1 f2 f1
΄ d1 a2 ] [31 f1 f2 f3

΄ d3 a2 ]3   ﴿2 ] [31 ﴾2  c2
0  [1  f3 f2 f1

΄ d1 a2 ]1  
 
    [3  f3 f2 f3

΄ d3 a2 ] 3  ﴿2 ] ]23  
 
   [[ 23 c1

1 [[ 21   f2 f3 f1 f2
΄ d2 a1 a3 ] ]12  ﴾3 c3

0  [2  f2 f3 f2
΄ d2 a1 a3 ]2 ﴿3 ] ] ]032  

 
 
9. [0  t8 [1  c3

2 [2 ﴾1   c1
0 ﴾2  f1 f2

΄ c2
0 [1  f1

΄ d1
΄ a2

΄ ] [31  f3
΄ d3

΄ a2
΄ ]3   ﴿2  ﴿1 [3  ﴾2  f1 f3 f2

΄ c2
0               

    [1 f1
΄ d1

΄  a2
΄ ] 1  

 
   [3  f3

΄ d3
΄ a2

΄ ]3  ﴿2 ] ] ]123  
 
   [[ 12  ﴾2 c2

0 ﴾1  f2 f1
΄ c1

0 [2   f2
΄ d2

΄ a1
΄ a3

΄ ]2 ﴿1 [3  f1 f2 f3
΄ c3

0 [2   f2
΄ d2

΄ a1
΄ a3

΄ ] ]32  ﴿2 ]1   
 
   [3 ﴾2 c2

0  [1   f3 f2 f1
΄ c1

0  [2  f2
΄ d2

΄ a1
΄ a3

΄ ] ]12  ﴾3  f2 f3
΄ c3

0 [2  f2
΄ d2

΄ a1
΄ a3

΄ ]2  ﴿3 ﴿2 ] ]23   
 
   [3  c1

2 [[ 12 ﴾2 f3 f2
΄ c2

0 [1 f1
΄ d1

΄ a2
΄ ] [31 f3

΄ d3
΄ a2

΄ ]3  ﴿2 ]1  ﴾3 c3
0 ﴾2 f3 f2

΄ c2
0 [1  f1

΄ d1
΄ a2

΄ ]1  
 
   [3  f3

΄ d3
΄ a2

΄ ]3  ﴿2 ﴿3 ] ] ]032  
 
10. [0 t9 c1

3 c3
3 [[ 21  ﴾1 c1

0 ﴾2 c2
0 [1 f1 f2 f1

΄ d1 a2 ] [31  f1 f2 f3
΄ d3 a2 ]3 ﴿2 ﴿1                                        

     [3  ﴾2 c2
0 [1  f1 f3 f2 f1

΄ d1 a2 ]1  
 
    [3   f1 f3 f2 f3

΄ d3 a2 ]3 ﴿2 ] ] ]123        
    [[ 12 ﴾2  c2

0 c3
1 ﴾1 c1

0 [2 f2 f1 f2
΄ d2 a1 a3 ]2 ﴿1 [[ 23 f1 f2 f3 f2

΄ d2 a1 a3 ] ]32 ﴿2 ]1  
 
    [3 ﴾2 c2

0 c1
1 [[ 21  f3 f2 f1 f2

΄ d2 a1 a3 ] ]12  ﴾3 c3
0 [2  f2 f3 f2

΄ d2 a1 a3 ]2 ﴿3 ﴿2 ] ]23  
 
    [[[ 123 ﴾2  c2

0 [1  f3 f2 f1
΄ d1 a2 ] [31  f3 f2 f3

΄ d3 a2 ]3 ﴿2 ]1  ﴾3 c3
0 ﴾2 c2

0  [1 f3 f2 f1
΄ d1 a2 ]1  

 
    [3  f3 f2 f3

΄ d3 a2 ]3  ﴿2 ﴿3 ] ] ]032  
 
 
11.  Y 2 
 

 

          Y 2 indicates that   two (2) Hamiltonian paths exist in the given graph.                     
The paths are:    a1 – a2 – a3   and   a3 – a2 – a1. 
Note: Here a different notation ﴾  ﴿ is used for membranes of thickness 2. 
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 Conclusions  
The mathematical model for the P system with Active Membranes was developed. The 
model was applied to solve the Hamiltonian Path Problem for Undirected Graphs and the 
relevant algorithms developed. 
 
Recommendations for Follow on Research 
The following Research Topics are identified for further investigation: 

1) Development of a Simulation model in Digital Computer for  P Systems 
with Active Membrane, 

2) Design and develop experimental techniques to implement the model in 
Bio-Chemical Media. 
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Appendix A:  Algorithm to solve SAT problem 
 
The computational steps for the construction of a P system for the propositional formula: 

    β = (x1 V x2 V x3) ^ (~x1 V ~x2 V x3) ^ (x1 V ~x2 V ~x3) with n=3 and m=3  

are shown below: 

 

Step 0:  

The initial configuration of the system is given as: 

[4 [3 [2 [1 [0  c0 a1 a2 a3 ] 0
0 ] 0

1 ] 0
2 ] 0

3 ] 0
4  

 

Step 1: 

[4 [3 [2 [1  [0 c1t1a2a3 ] +
0  [0 c1f1a2a3 ] −

0  ] 0
1 ] 0

2 ] 0
3 ] 0

4  

 

The rules applied in parallel are: 

[0 c0  → c1 ] 0
0  and   

the division rule, [0 a1 ] 0
0  →   [0 t 1  ] +

0    [0 f 1  ] −
0  

 

Step 2:  

Membrane 1 is divided due to the presence of the two copies of membrane 0 with 

opposite polarizations using the rule: 

[1  [0 ]+0  [0 ]−0  ] 0
1    →  [1  [0 ] 0

0 ] +
1     [1  [0 ] 0

0 ] −
1  

The counter c1 is replaced by c2. No new truth value is introduced at this step since 

membrane 0 is not of neutral polarity. We get, 

 

[4 [3 [2   [1  [0 c2 t1 a2 a3 ] 0
0 ] +

1   [1  [0 c2 f1 a2 a3 ] 0
0 ] −

1   ] 0
2 ] 0

3 ] 0
4  
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Step 3: 

Membrane 0 is divided and the truth assignment of the variable a2 also takes place 

according to the following rule: 

 [ ]0020 a   →  [ ] [ ]−+
020020 ft  

The counter c2 is replaced by c3. Membrane 2 is also divided due to the presence of two 

membranes 1 with opposite polarity by the rule: 

[ [ ] [ ] ]0211112
−+   →  [2 [1 ] 0

1 ]+2     [2 [1 ] 0
1 ]−2  

 

We get: 

 

[4 [3   [2 [1  [0 c3 t1 t2 a3 ] +
0 [0 c3 t1 f2 a3 ] −

0 ] 0
1 ]+2   

           [2 [1 [0 c3 f1 t2 a3 ] +
0 [0 c3 f1 f2 a3 ] −

0 ] 0
1 ]−2   ] 0

3 ] 0
4  

 

Step4: 

Membrane 1 is divided since it contains two membranes 0 of opposite polarity using the 

rule: 

       [1  [0 ]+0  [0 ]−0  ] 0
1    →  [1  [0 ] 0

0 ] +
1     [1  [0 ] 0

0 ] −
1  

The counter c3 is replaced by c4. Membrane 3 would also be divided since it contains 

membranes 2 of opposite polarity using the rule: 

[m [ 1−m ] +
−1m  [ 1−m ] −

−1m  ] 0
m  → [m [ 1−m ] 0

1−m ] 0
m     [m [ 1−m ] 0

1−m ] 0
m  

since here m=3. Thus, we get, 

 

[4   [3 [2    [1 [0 c4 t1 t2 a3 ] 0
0 ] +

1 [1 [0 c4 t1 f2 a3 ] 0
0 ] −

1    ] 0
2 ] 0

3  

            [3 [2    [1 [0 c4 f1 t2 a3 ] 0
0 ] +

1 [1 [0 c4 f1 f2 a3 ] 0
0 ] −

1    ] 0
2 ] 0

3  ] 0
4  

 

Step 5: 

Membrane 0 is divided again and there occurs truth assignment of the variable a3. Also, 

membrane 2 is divided due to the presence of two opposite polarity membrane 1. Counter 

c4 is replaced by c5. Thus, we get: 
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  [4 [3 [2 [1 [0 c5 t1 t2 t3 ]+0 [0 c5 t1 t2 f3 ]−0 ] 0
1 ]+2 [2 [1 [0 c5 t1 f2 t3 ]+0 [0 c5 t1 f2 f3 ]−0  

] 0
1 ]−2 ] 0

3  

[3 [2 [1 [0 c5 f1 t2 t3 ]+0 [0 c5 f1 t2 f3 ]−0 ] 0
1 ]+2 [2 [1 [0 c5 f1 f2 t3 ]+0 [0 c5 f1 f2 f3 ]−0  

] 0
1 ]−2 ] 0

3 ] 0
4  

Step 6: 

Membrane 1 is divided by the rule 

[1  [0 ]+0  [0 ]−0  ] 0
1    →  [1  [0 ] 0

0 ] +
1     [1  [0 ] 0

0 ] −
1  

Membrane 3 is divided by the rule  

[m [ 1−m ] +
−1m  [ 1−m ] −

−1m  ] 0
m  → [m [ 1−m ] 0

1−m ] 0
m     [m [ 1−m ] 0

1−m ] 0
m  

since here m=3. The counter c5 is replaced by c6. Thus we get, 

 

[4   [3 [2 [1 [0 c6 t1 t2 t3 ] 0
0 ] +

1 [1 [0 c6 t1 t2 f3 ] 0
0 ] −

1 ] 0
2 ] 0

3  

      [3 [2 [1 [0  c6 t1 f2 t3 ] 0
0 ] +

1 [1 [0 c6 t1 f2 f3 ] 0
0 ] −

1 ] 0
2 ] 0

3  

      [3 [2 [1 [0  c6 f1 t2 t3 ] 0
0 ] +

1 [1 [0 c6 f1 t2 f3 ] 0
0 ] −

1 ] 0
2 ] 0

3  

      [3 [2 [1 [0  c6 f1 f2 t3 ] 0
0 ] +

1 [1 [0 c6 f1 f2 f3 ] 0
0 ] −

1 ] 0
2 ] 0

3  ] 0
4  

 

Step 7: 

No more truth assignments are possible, so membrane 0 cannot divide any further. The 

counter c6 is replaced by c7. Membrane 2 is divided and we get, 

 

[4   [3   [2 [1 [0 c7 t1 t2 t3  ] 0
0 ] 0

1 ]+2  [2 [1 [0 c7 t1 t2 f3 ] 0
0 ] 0

1 ]−2   ] 0
3  

      [3   [2 [1 [0 c7 t1 f2 t3 ] 0
0 ] 0

1 ]+2  [2 [1 [0 c7 t1 f2 f3 ] 0
0 ] 0

1 ]−2   ] 0
3  

      [3   [2 [1 [0 c7 f1 t2 t3 ] 0
0 ] 0

1 ]+2  [2 [1 [0 c7 f1 t2 f3 ] 0
0 ] 0

1 ]−2   ] 0
3  

      [3   [2 [1 [0 c7 f1 f2 t3 ] 0
0 ] 0

1 ]+2  [2 [1 [0 c7 f1 f2 f3 ] 0
0 ] 0

1 ]−2   ] 0
3   ] 0

4  
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Step8: 

Membrane 3 is divided by the rule, 

[m [ 1−m ] +
−1m  [ 1−m ] −

−1m  ] 0
m  → [m [ 1−m ] 0

1−m ] 0
m     [m [ 1−m ] 0

1−m ] 0
m  

The counter c7 is replaced by c8. We get, 

 

[4   [3 [2 [1 [0 c8 t1 t2 t3  ] 0
0 ] 0

1 ] 0
2 ] 0

3     [3 [2 [1 [0 c8 t1 t2 f3 ] 0
0 ] 0

1 ] 0
2 ] 0

3  

      [3 [2 [1 [0 c8 t1 f2 t3  ] 0
0 ] 0

1 ] 0
2 ] 0

3     [3 [2 [1 [0 c8 t1 f2 f3 ] 0
0 ] 0

1 ] 0
2 ] 0

3  

      [3 [2 [1 [0 c8 f1 t2 t3  ] 0
0 ] 0

1 ] 0
2 ] 0

3     [3 [2 [1 [0 c8 f1 t2 f3 ] 0
0 ] 0

1 ] 0
2 ] 0

3  

      [3 [2 [1 [0 c8 f1 f2 t3  ] 0
0 ] 0

1 ] 0
2 ] 0

3     [3 [2 [1 [0 c8 f1 f2 f3 ] 0
0 ] 0

1 ] 0
2 ] 0

3 ] 0
4  

 

Step 9: 

The counter has reached its maximum limit since 2n+m-1 = 8 and hence, the rule applied 

would be [0 c 12 −+mn ] 0
0  → t , that is [0 c8 ] 0

0  → t. 

Thus, all membrane 0 are dissolved. We get, 

 

[4   [3 [2 [1 t t1 t2 t3  ] 0
1 ] 0

2 ] 0
3     [3 [2 [1 t t1 t2 f3 ] 0

1 ] 0
2 ] 0

3  

      [3 [2 [1 t t1 f2 t3  ] 0
1 ] 0

2 ] 0
3     [3 [2 [1 t t1 f2 f3 ] 0

1 ] 0
2 ] 0

3  

      [3 [2 [1 t f1 t2 t3  ] 0
1 ] 0

2 ] 0
3     [3 [2 [1 t f1 t2 f3 ] 0

1 ] 0
2 ] 0

3  

      [3 [2 [1 t f1 f2 t3  ] 0
1 ] 0

2 ] 0
3     [3 [2 [1 t f1 f2 f3 ] 0

1 ] 0
2 ] 0

3 ] 0
4   

 

 

Step 10: 

Now, the rule 

[ j t i ] 0
j  → ti , if xi appears in clause Cj, 1 ≤ i ≤ n, 1 ≤ j ≤ m, and   

[ j f i ] 0
j  → fi , if ~ xi appears in clause Cj, 1 ≤ i ≤ n, 1 ≤ j ≤ m 

is applied. Clause 1 is satisfied by all except fourth, seventh and eighth. Thus, remaining 

membrane 1 are dissolved. We get, 

[4   [3 [2 t t1 t2 t3 ] 0
2 ] 0

3     [3 [2 t t1 t2 f3 ] 0
2 ] 0

3  
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      [3 [2 t t1 f2 t3  ] 0
2 ] 0

3    [3 [2 [1 t t1 f2 f3 ] 0
1 ] 0

2 ] 0
3  

      [3 [2 t f1 t2 t3  ] 0
2 ] 0

3    [3 [2 t f1 t2 f3 ] 0
2 ] 0

3  

      [3 [2 [1 t f1 f2 t3  ] 0
1 ] 0

2 ] 0
3     [3 [2 [1 t f1 f2 f3 ] 0

1 ] 0
2 ] 0

3 ] 0
4   

 

Step 11: 

Clause 2 is satisfied by third and fifth truth assignments, so the corresponding membrane 

2 are dissolved and we get, 

 

[4   [3 [2 t t1 t2 t3 ] 0
2 ] 0

3     [3 [2 t t1 t2 f3 ] 0
2 ] 0

3  

      [3 t t1 f2 t3  ] 0
3    [3 [2 [1 t t1 f2 f3 ] 0

1 ] 0
2 ] 0

3  

      [3 t f1 t2 t3  ] 0
3    [3 [2 t f1 t2 f3 ] 0

2 ] 0
3  

      [3 [2 [1 t f1 f2 t3  ] 0
1 ] 0

2 ] 0
3     [3 [2 [1 t f1 f2 f3 ] 0

1 ] 0
2 ] 0

3 ] 0
4   

 

Step 12: 

Clause 3 is satisfied by only third truth assignment and thus, one copy of t is left free in 

the skin membrane, corresponding to the truth assignment which satisfy the formula.  

 

[4 [3 [2 t t1 t2 t3 ] 0
2 ] 0

3  [3 [2 t t1 t2 f3 ] 0
2 ] 0

3    t t1 f2 t3   [3 [2 [1 t t1 f2 f3 ] 0
1 ] 0

2 ] 0
3  

     [3 t f1 t2 t3 ] 0
3 [3 [2 t f1 t2 f3 ] 0

2 ] 0
3 [3 [2 [1 t f1 f2 t3 ] 0

1 ] 0
2 ] 0

3 [3 [2 [1 t f1 f2 

f3 ] 0
1 ] 0

2 ] 0
3 ] 0

4  

 

Step 13: 

t will be sent out of the system by the rule, 

[ 1+m  t ] 0
1+m  → [ 1+m ] +

+1m  t  

Thus the formula is satisfied. This is the last step of the computation because no further 

rule can be applied. The skin becomes positively charged.  
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Algorithm to solve Hamiltonian Path Problem 

The computational steps for the construction of the P system for the Graph, 

G = ({1,2,3,4}, {{1,2}, {2,3}, {3,4}}) 

Here n = 4, so we will have 6 membranes, labeled from 0 to 5. 

 

Step 0:  

The initial configuration is given as: 

 [5 [4 [3 [2 [1 [0 c0f ] 0
0 ] 0

1 ] 0
2 ] 0

3 ] 0
4 ] 0

5  

 

Step 1:  

The counter c0 is incremented using Rule 1. Membrane 0 is divided using Rule 3.  

 [5 [4 [3 [2 [1  [0 c1a1 ] +
0  [0 c1a2 ] −

0  [0 c1a3 ] +
0  [0 c1a4 ] −

0 ] 0
1 ] 0

2 ] 0
3 ] 0

4 ] 0
5  

 

Step 2:  

The counter c1 is incremented to c2. Membrane 1 is divided according to Rule 9. No rules 

of type 4 are applied to ai here since the membrane 0 is not neutral.   

 [5 [4 [3 [2  [1  [0 c2a1 ] 0
0 ] +

1  [1  [0 c2a2 ] 0
0 ] −

1   

[1  [0 c2a3 ] 0
0 ] +

1  [1  [0 c2a4 ] 0
0 ] −

1 ] 0
2 ] 0

3 ] 0
4 ] 0

5  

  

Step 3:  

The counter is incremented to c3. Rules of type 4 are applied to ai. Membrane 2 is divided 

by Rule 9.  

 [5 [4 [3   [2  [1  [0 c3.1.a2 ] 0
0 ] 0

1 ] +
2   [2  [1  [0  c3.2.a3 ] +

0 [0  c3.2.a1 ] −
0 ] 0

1 ] −
2  

     [2  [1  [0 c3.3.a4 ] +
0 [0  c3.3.a2 ] −

0 ] 0
1 ] +

2  [2  [1  [0  

c3.4.a3 ] 0
0 ] 0

1 ] −
2 ] 0

3 ] 0
4 ] 0

5  
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Step 4: 

The counter c3 is replaced by c4. Rules of type 4 are again applied to a2 and a3 in neutral 

membranes 0. For ai, in non-neutral membranes 0, rule of type 4 cannot be applied; 

hence, membrane 1 divides instead. Membrane 3 is divided using the rule of type 9.   

[5 [4 [3 [2  [1   [0 c4 .1.2. a3 ] +
0 [0  c4 .1.2. a1 ] −

0  ] 0
1  ] 0

2 ] +
3  

          [3 [2  [1   [0  c4 .2. a3 ] 0
0 ] +

1 [1   [0  c4 .2. a1 ] 0
0 ] −

1  ] 0
2 ] −

3  

               [3 [2  [1   [0  c4 .3. a4 ] 0
0 ] +

1 [1   [0  c4 .3. a2 ] 0
0 ] −

1  ] 0
2 ] +

3  

          [3 [2  [1   [0 c4 .4.3. a4 ] +
0 [0  c4 .4.3. a2 ] −

0  ] 0
1  ] 0

2 ] −
3 ] 0

4 ] 0
5  

 

Step 5:  

The counter c4 is incremented to c5. Membrane 4 is divided by the rule, 

 [ [ ] [ ] [ ] ]0111111 ...... nnnnnnnn
+
−−

−
−−

+
−−  → [ [ ] ]00

11 nnnn −−  [ [ ] ]00
11 nnnn −− ….. [ [ ] ]00

11 nnnn −−  

where n = 4.  

Membrane 1 is divided in the case where membrane 0 is non-neutral. Membrane 2 is 

divided if membrane 1 is non-neutral. Rules of type 4 are applied to that ai which is there 

in neutral membranes 0.  

 [5 [4 [3 [2  [1   [0  c5 .1.2. a3 ] 0
0 ] +

1 [1  [0  c5 .1.2. a1 ] 0
0 ] −

1  ] 0
2 ] 0

3 ] 0
4  

          [4 [3 [2 [1 [0 c5 .2.3. a4 ] +
0 [0 c5 .2.3. a2 ] −

0 ] 0
1 ] +

2  [2 [1 [0  c5 .2.1. 

a2 ] 0
0 ] 0

1 ] −
2 ] 0

3 ] 0
4  

     [4 [3 [2 [1 [0 c5 .3.4. a3 ] 0
0 ] 0

1 ] +
2 [2 [1 [0 c5 .3.2. a3 ] +

0 [0 c5 .3.2. 

a1 ] −
0 ] 0

1 ] −
2 ] 0

3 ] 0
4  

          [4 [3 [2 [1 [0 c5 .4.3. a4 ] 0
0 ] +

1 [1  [0  c5 .4.3. a2 ] 0
0 ] −

1  ] 0
2 ] 0

3 ] 0
4 ] 0

5  

 

Step 6:  

 [5 [4 [3 [2 [1 [0  c6.1.2.3.a4 ] +
0 [0 c6.1.2.3.a2 ] −

0 ] 0
1 ] +

2  

   [2 [1 [0 c6.1.2.1.a2 ] 0
0 ] 0

1 ] −
2 ] 0

3 ] 0
4  

         [4 [3 [2  [1   [0  c6 .2.3. a4 ] 0
0 ] +

1 [1  [0  c6 .2.3. a2 ] 0
0 ] −

1  ] 0
2 ] +

3  
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             [3 [2  [1   [0  c6 .2.1.2. a3 ] +
0 [0 c6 .2.1.2. a1 ] −

0 ] 0
1 ] 0

2 ] −
3 ] 0

4  

    [4 [3 [2 [1 [0 c6.3.4.3.a4 ] +
0 [0 c6 .3.4.3. a2 ] −

0 ] 0
1 ] 0

2 ] +
3  

      

[3 [2  [1   [0 c6 3.2. a3 ] 0
0 ] +

1 [1  [0 c6 3.2. a1 ] 0
0 ] −

1  ] 0
2 ] −

3 ] 0
4  

      [4 [3 [2  [1   [0 c6 4.3.4. a3 ] 0
0 ] 0

1 ] +
2  

             [2  [1   [0 c6 4.3.2. a3 ] +
0 [0 c6 4.3.2. a1 ] −

0 ] 0
1 ] −

2 ] 0
3 ] 0

4 ] 0
5  

 

Step 7: 

 [5 [4 [3 [2 [1 [0  c7.1.2.3.a4 ] 0
0 ] +

1 [1  [0  c7 .1.2.3. a2 ] 0
0 ] −

1  ] 0
2 ] +

3  

          [3 [2  [1   [0  c7 .1.2.1.2. a3 ] +
0 [0 c7 .1.2.1.2. a1 ] −

0 ] 0
1 ] 0

2 ] −
3 ] 0

4  

     [4 [3 [2 [1 [0 c7.2.3.4.a3 ] 0
0 ] 0

1 ] +
2 [2 [1 [0 c7.2.3.2.a3 ] +

0 [0 c7.2.3.2. 

a1 ] −
0 ] 0

1 ] −
2 ] 0

3 ] 0
4  

     [4 [3 [2 [1 [0 c7.2.1.2.a3 ] 0
0 ] +

1 [1  [0  c7 .2.1.2. a1 ] 0
0 ] −

1  ] 0
2 ] 0

3 ] 0
4  

     [4 [3 [2 [1 [0 c7.3.4.3.a4 ] 0
0 ] +

1 [1  [0  c7 .3.4.3. a2 ] 0
0 ] −

1  ] 0
2 ] 0

3 ] 0
4  

     [4 [3 [2 [1 [0 c7.3.2.3.a4 ] +
0 [0 c7.3.2.3.a2 ] −

0 ] 0
1 ] +

2  

             [2 [1 [0 c7.3.2.1.a2 ] 0
0 ] 0

1 ] −
2 ] 0

3 ] 0
4  

     [4 [3 [2 [1 [0  c7 .4.3.4.3. a4 ] +
0 [0 c7 .4.3.4.3. a2 ] −

0 ] 0
1 ] 0

2 ] +
3  

              [3 [2  [1   [0 c7 4.3.2. a3 ] 0
0 ] +

1 [1  [0 c6 .4.3.2. a1 ] 0
0 ] −

1  ] 0
2 ] −

3 ] 0
4 ] 0

5  

 

Step 8:  

No more rules are possible for ai in membrane 0, as ci cannot increase further. Thus, Rule 

2 is applied and the counter is transformed to t as membrane 0 dissolves.  

 [5 [4 [3 [2 [1  t.1.2.3.a4 ] 0
1 ] +

2 [2 [1  t .1.2.3. a2  ] 0
1 ] −

2 ] 0
3 ] 0

4  

     [4 [3 [2  [1  t .1.2.1.2. a3. t .1.2.1.2. a1 ] 0
1 ] 0

2 ] 0
3 ] 0

4  

     [4 [3 [2 [1  t.2.3.4.a3 ] 0
1 ] 0

2 ] +
3 [3 [2 [1  t.2.3.2.a3. t.2.3.2. a1 ] 0

1 ] 0
2 ] −

3 ] 0
4  

     [4 [3 [2 [1  t.2.1.2.a3 ] 0
1 ] +

2  [2 [1  t .2.1.2. a1 ] 0
1 ] −

2 ] 0
3 ] 0

4  
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     [4 [3 [2 [1 t.3.4.3.a4 ] 0
1 ] +

2 [2 [1  t .3.4.3. a2 ] 0
1 ] −

2 ] 0
3 ] 0

4  

     [4 [3 [2 [1 t.3.2.3.a4.t.3.2.3.a2 ] 0
1 ] 0

2 ] +
3 [3 [2 [1 t.3.2.1.a2 ] 0

1 ] 0
2 ] −

3 ] 0
4  

     [4 [3 [2 [1 t.4.3.4.3. a4.t.4.3.4.3. a2 ] 0
1 ] 0

2 ] 0
3 ] 0

4  

          [4 [3 [2  [1 t 4.3.2. a3 ] 0
1 ] +

2  [2 [1 t .4.3.2. a1 ] 0
1 ] −

2 ] 0
3 ] 0

4 ] 0
5  

 

Step 9:  

Rule 5 is applied and all the ai’s are converted into i’s. Membrane 1 dissolves if 1 is 

present according to rule 6. Membrane 1 also dissolves if a1 is present according to rule 7.  

 [5 [4 [3 [2  t.1.2.3.4 ] 0
2 ] +

3 [3 [2 t .1.2.3. 2 ] 0
2 ] −

3 ] 0
4  

     [4 [3 [2  t .1.2.1.2. 3. t .1.2.1.2.1 ] 0
2 ] 0

3 ] 0
4  

     [4 [3 [2 [1  t.2.3.4.3 ] 0
1 ] 0

2 ] 0
3 ] 0

4  

     [4 [3 [2 t.2.3.2.3. t.2.3.2.1 ] 0
2 ] 0

3 ] 0
4  

     [4 [3 [2 t.2.1.2.3 ] 0
2 ] +

3   [3 [2 t .2.1.2.1 ] 0
2 ] −

3 ] 0
4  

     [4 [3 [2 [1 t.3.4.3.4 ] 0
1 ] 0

2 ] +
3   [3 [2 [1  t .3.4.3.2 ] 0

1 ] 0
2 ] −

3 ] 0
4  

     [4 [3 [2 [1 t.3.2.3.4.t.3.2.3.2 ] 0
1 ] 0

2 ] 0
3 ] 0

4  

     [4  [3 [2  t.3.2.1.2 ] 0
2 ] 0

3 ] 0
4   

     [4 [3 [2 [1 t.4.3.4.3.4.t.4.3.4.3.2 ] 0
1 ] 0

2 ] 0
3 ] 0

4  

          [4 [3 [2  [1 t 4.3.2.3 ] 0
1 ] 0

2 ] +
3   [3  [2  t .4.3.2.1 ] 0

2 ] −
3 ] 0

4 ] 0
5  

 

Step 10:  

Membrane 2 dissolves if 2 is present. 

 [5 [4 [3  t.1.2.3.4 ] 0
3 ] 0

4   [4 [3  t .1.2.3. 2 ] 0
3 ] 0

4  

     [4 [3  t .1.2.1.2. 3. t .1.2.1.2.1 ] 0
3 ] 0

4  

     [4 [3 [2 [1  t.2.3.4.3 ] 0
1 ] 0

2 ] 0
3 ] 0

4  

     

[4 [3  t.2.3.2.3. t.2.3.2.1 ] 0
3 ] 0

4  
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     [4 [3  t.2.1.2.3 ] 0
3 ] 0

4   [4 [3  t .2.1.2.1 ] 0
3 ] 0

4  

     [4 [3 [2 [1 t.3.4.3.4 ] 0
1 ] 0

2  ] 0
3 ] 0

4    [4 [3 [2 [1  t .3.4.3.2 ] 0
1 ] 0

2 ] 0
3 ] 0

4  

     [4 [3 [2 [1 t.3.2.3.4.t.3.2.3.2 ] 0
1 ] 0

2 ] 0
3 ] 0

4  

     [4  [3   t.3.2.1.2 ] 0
3 ] 0

4   

     [4 [3 [2 [1 t.4.3.4.3.4.t.4.3.4.3.2 ] 0
1 ] 0

2 ] 0
3 ] 0

4  

          [4 [3 [2  [1  t 4.3.2.3 ] 0
1 ] 0

2 ] 0
3 ] 0

4    [4 [3  t .4.3.2.1 ] 0
3 ] 0

4 ] 0
5  

 

Step 11:  

Membrane 3 dissolves if 3 is present. 

 [5 [4  t.1.2.3.4 ] 0
4   [4  t.1.2.3. 2 ] 0

4   [4  t .1.2.1.2. 3. t .1.2.1.2.1 ] 0
4  

     [4 [3 [2 [1  t.2.3.4.3 ] 0
1 ] 0

2 ] 0
3 ] 0

4    [4  t.2.3.2.3. t.2.3.2.1 ] 0
4  

     [4  t.2.1.2.3 ] 0
4   [4 [3  t .2.1.2.1 ] 0

3 ] 0
4  

     [4 [3 [2 [1 t.3.4.3.4 ] 0
1 ] 0

2  ] 0
3 ] 0

4    [4 [3 [2 [1  t .3.4.3.2 ] 0
1 ] 0

2 ] 0
3 ] 0

4  

     [4 [3 [2 [1 t.3.2.3.4.t.3.2.3.2 ] 0
1 ] 0

2 ] 0
3 ] 0

4  

     [4   t.3.2.1.2 ] 0
4  [4 [3 [2 [1  t.4.3.4.3.4.t.4.3.4.3.2 ] 0

1 ] 0
2 ] 0

3 ] 0
4  

          [4 [3 [2  [1  t 4.3.2.3 ] 0
1 ] 0

2 ] 0
3 ] 0

4    [4  t .4.3.2.1 ] 0
4 ] 0

5  

 

Step 12:  

Membrane 4 dissolves if 4 is present.  

 [5   t.1.2.3.4    [4  t.1.2.3. 2 ] 0
4   [4  t .1.2.1.2. 3. t .1.2.1.2.1 ] 0

4  

     [4 [3 [2 [1  t.2.3.4.3 ] 0
1 ] 0

2 ] 0
3 ] 0

4    [4  t.2.3.2.3. t.2.3.2.1 ] 0
4  

     [4  t.2.1.2.3 ] 0
4   [4 [3  t .2.1.2.1 ] 0

3 ] 0
4  

     [4 [3 [2 [1 t.3.4.3.4 ] 0
1 ] 0

2  ] 0
3 ] 0

4    [4 [3 [2 [1  t .3.4.3.2 ] 0
1 ] 0

2 ] 0
3 ] 0

4  

     [4 [3 [2 [1 t.3.2.3.4.t.3.2.3.2 ] 0
1 ] 0

2 ] 0
3 ] 0

4  

[4   t.3.2.1.2 ] 0
4  [4 [3 [2 [1  t.4.3.4.3.4.t.4.3.4.3.2 ] 0

1 ] 0
2 ] 0

3 ] 0
4  

          [4 [3 [2  [1  t 4.3.2.3 ] 0
1 ] 0

2 ] 0
3 ] 0

4      t .4.3.2.1  ] 0
5  
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Step 13:  

There are two copies of t in the skin membrane. One of the copies of t goes out of the 

skin membrane. The computation stops, because there are no more rules applied. Thus, 

the Hamiltonian Path Problem is solved.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


